Search results for "breast cancer cells"

showing 10 items of 38 documents

Analysis of miRNA expression profile induced by short term starvation in breast cancer cells treated with doxorubicin

2017

// Sergio Rizzo 1, * , Antonina Cangemi 1, * , Antonio Galvano 1, * , Daniele Fanale 1 , Silvio Buscemi 2 , Marcello Ciaccio 3 , Antonio Russo 1 , Sergio Castorina 4, 5, # and Viviana Bazan 1, # 1 Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy 2 Department of Internal and Specialistic Medicine (DIBIMIS), Laboratory of Clinical Nutrition, University of Palermo, Palermo, Italy 3 Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biopathology and Medical Biotechnology, University of Palermo, U.O.C. Laboratory Medicine, Policlinico University Hospital, Palermo, Italy 4 Fondazione Mediterranea…

0301 basic medicineOncologymedicine.medical_specialtychemotherapy responseClinical nutritiondoxorubicin03 medical and health sciences0302 clinical medicineInternal medicinemicroRNAmedicineDoxorubicinTriple-negative breast cancershort term starvationtriple negative breast cancer cellsbusiness.industryCancerMicroRNAmedicine.diseaseMolecular medicinemicroRNAstriple negative breast cancer cell030104 developmental biologyOncologyTumor progression030220 oncology & carcinogenesisImmunologyBreast cancer cellsbusinessChemotherapy response; Doxorubicin; MicroRNAs; Short term starvation; triple negative breast cancer cells; Oncologymedicine.drugResearch PaperOncotarget
researchProduct

Is Danggui Safe to be Taken by Breast Cancer Patients?-A Skepticism Finally Answered by Comprehensive Preclinical Evidence.

2019

Angelica sinensis (AS, Danggui) has long been regarded to stimulate breast cancer growth; hence, the use of AS in breast cancer patients remains a major concern for both patients and practitioners. Since safety studies of herbs would be unethical to carry out in patients, the present study aimed to investigate the potential unsafe effects of AS in a systematic pre-clinical approach. Human breast cancer cells, breast orthotopic tumor-bearing mouse models, as well as primary breast cancer cells from patients’ tumors were used to evaluate the effect of AS hot water extract on the progression of breast tumors and/or growth of breast cancer cells. We showed that AS is not that stimulatory in bre…

0301 basic medicineOncologysafetymedicine.medical_specialtyprimary breast cancer cellsmedicine.drug_classXenotransplantationmedicine.medical_treatmentTraditional Chinese medicine03 medical and health sciences0302 clinical medicineBreast cancerbreast cancerInternal medicinemedicinePharmacology (medical)skin and connective tissue diseasesOriginal ResearchPharmacologySafety studiesbusiness.industrylcsh:RM1-950Angelica sinensisChinese herbal medicinesmedicine.diseaselcsh:Therapeutics. Pharmacology030104 developmental biologyEstrogen030220 oncology & carcinogenesisCancer cellestrogenic herbsBreast cancer cellsPrimary breast cancerbusinessFrontiers in pharmacology
researchProduct

Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation

2018

Silver nanoparticles (AgNPs), embedded into a specific polysaccharide (EPS), were biogenerated by Klebsiella oxytoca DSM 29614 under aerobic (AgNPs-EPSaer) and anaerobic conditions (AgNPs-EPSanaer). Both AgNPs-EPS matrices were tested by MTT assay for cytotoxic activity against human breast (SKBR3 and 8701-BC) and colon (HT-29, HCT 116 and Caco-2) cancer cell lines, revealing AgNPs-EPSaer as the most active, in terms of IC50, with a more pronounced efficacy against breast cancer cell lines. Therefore, colony forming capability, morphological changes, generation of reactive oxygen species (ROS), induction of apoptosis and autophagy, inhibition of migratory and invasive capabilities and prote…

0301 basic medicineProgrammed cell deathSettore BIO/11 - Biologia MolecolareMitochondrionmedicine.disease_causeSettore BIO/19 - Microbiologia Generale03 medical and health sciencesproteomicsbreast cancer cellmedicineMTT assaySettore BIO/06 - Anatomia Comparata E Citologiabacteriachemistry.chemical_classificationAnticancer activity; Bacteria; Breast cancer cells; Proteomics; Silver nanoparticles (AgNPs); OncologyReactive oxygen speciesBreast cancer cellsChemistryAutophagysilver nanoparticles (AgNPs)Cell biology030104 developmental biologyanticancer activitysilver nanoparticles (AgNPs); bacteria; breast cancer cells; anticancer activity; proteomicsOncologyApoptosisSKBR3Oxidative stressResearch Paper
researchProduct

Cytotoxic activity of the histone deacetylase 3-Selective inhibitor Pojamide on MDA-MB-231 triple-negative breast cancer cells

2019

We examined the effects of the ferrocene-based histone deacetylase-3 inhibitor Pojamide (N1-(2-aminophenyl)-N8-ferrocenyloctanediamide) and its two derivatives N1-(2-aminophenyl)-N6-ferrocenyladipamide and N1-(2-aminophenyl)-N8-ferroceniumoctanediamide tetrafluoroborate on triple-negative MDA-MB-231 breast cancer cells. Viability/growth assays indicated that only the first two compounds at 70 &mu

0301 basic medicineQD0901Triple Negative Breast Neoplasmslcsh:Chemistry0302 clinical medicinebreast cancer cellmitochondrial transmembrane potentialCytotoxic T cellQDSettore BIO/06 - Anatomia Comparata E Citologialcsh:QH301-705.5SpectroscopyTriple-negative breast cancerreactive oxygen speciesCell DeathChemistryHistone deacetylase inhibitorQapoptosisGeneral MedicineCell cycle3. Good healthComputer Science Applications030220 oncology & carcinogenesisFemalecell cycleProgrammed cell deathautophagymedicine.drug_classCell SurvivalCatalysisArticleHistone DeacetylasesInorganic Chemistry03 medical and health sciencesCell Line TumormedicineBiomarkers TumorHumansViability assayPhysical and Theoretical ChemistryMolecular Biologyhistone deacetylase inhibitorcell viabilityOrganic ChemistryAutophagyapoptosiMatrix MetalloproteinasesHistone Deacetylase InhibitorsSettore BIO/18 - Genetica030104 developmental biologylcsh:Biology (General)lcsh:QD1-999ApoptosisCancer researchQD0146breast cancer cells
researchProduct

Effect of Manganese Chloride and of Cotreatment with Cadmium Chloride on the In Vitro Proliferative, Motile, and Invasive Behavior of MDA-MB231 Breas…

2019

We examined the dose&ndash

0301 basic medicinecadmiumproliferationPharmaceutical ScienceBreast NeoplasmsCadmium chloridemedicine.disease_causeArticleAnalytical ChemistryMetastasislcsh:QD241-44103 medical and health scienceschemistry.chemical_compound0302 clinical medicineBreast cancerCadmium ChlorideChlorideslcsh:Organic chemistryCell Movementbreast cancer cellCell Line TumorDrug DiscoverymedicineHumansSettore BIO/06 - Anatomia Comparata E CitologiaPhysical and Theoretical ChemistrychemotaxisCell ProliferationCell growthOrganic Chemistrymedicine.diseasechemoinvasionIn vitroEpithelium030104 developmental biologymedicine.anatomical_structureManganese CompoundschemistryChemistry (miscellaneous)030220 oncology & carcinogenesisCancer cellCancer researchmanganeseMolecular MedicineFemalechemotaxiCarcinogenesisbreast cancer cellsMolecules
researchProduct

Citrus sinensis and Vitis vinifera Protect Cardiomyocytes from Doxorubicin-Induced Oxidative Stress: Evaluation of Onconutraceutical Potential of Veg…

2020

Abstract: The interest towards nutraceuticals able to counteract drug side effects is continuously growing in current chemotherapeutic protocols. In the present study, we demonstrated that smoothies containing mixtures of Citrus sinensis and Vitis vinifera L. cv. Aglianico N, two typical fruits of the Mediterranean diet, possess bioactive polyphenols that protect cardiomyocytes against doxorubicin-induced oxidative stress. The polyphenolic extracts isolated from Citrus sinensis- and Vitis vinifera-based functional smoothies were deeply characterized by Liquid Chromatography-Mass Spectrometry methods. Subsequently, the functional smoothies and relative mixtures were tested to verify their ab…

0301 basic medicineonconutraceuticalPhysiologyClinical BiochemistrycardiotoxicityAnthracyclinemedicine.disease_causeBiochemistryArticle03 medical and health sciences0302 clinical medicineNutraceuticalmedicineoxidative stressDoxorubicinFood scienceVitis viniferaadjuvant therapy; anthracyclines; antioxidants; apoptosis; cardiotoxicity; functional foods; onconutraceutical; oxidative stress; polyphenolsMolecular Biologypolyphenolsfunctional foodsanthracyclinesChemistryFunctional foodlcsh:RM1-950apoptosisApoptosifood and beveragesadjuvant therapyCell Biology030104 developmental biologyantioxidantslcsh:Therapeutics. PharmacologyApoptosisPolyphenol030220 oncology & carcinogenesisOxidative streBreast cancer cellsAntioxidantCitrus × sinensisOxidative stressmedicine.drugAntioxidants
researchProduct

Thirteen miRNAs involved in the response of breast cancer cells to doxorubicin.

2013

e12019 Background: Mature microRNAs (miRNAs) are a class of naturally occurring, small non-coding RNA molecules, about 21–25 nucleotides. Growing evidence shows that miRNAs exhibit a variety of regulatory functions related to cell growth, development, and differentiation, and are associated with a wide variety of human diseases. Several miRNAs have been linked to cancer; since expression analysis studies have revealed perturbed miRNA expression in tumors compared to normal tissues. As a consequence, human miRNAs are likely to be highly useful as biomarkers, especially for future cancer diagnostics, and are emerging as targets for disease intervention. Since doxorubicin (DOX) has been used …

Cancer ResearchCell growthRNACancerDiseaseBiologymedicine.diseaseBioinformaticsBreast cancerOncologymicroRNAmedicineDoxorubicinBreast cancer cellsmedicine.drugJournal of Clinical Oncology
researchProduct

Notch inhibition restores TRAIL-mediated apoptosis via AP1-dependent upregulation of DR4 and DR5 TRAIL receptors in MDA-MB-231 breast cancer cells.

2013

Notch is a family of transmembrane receptors whose activation through proteolytic cleavage by γ-secretase targets genes which participate in cell development, differentiation and tumorigenesis. Notch signaling is constitutively activated in various cancers, including breast cancer and its upregulation is usually related with poor clinical outcomes. Therefore, targeting Notch signaling with γ-secretase inhibitors (GSIs) is considered a promising strategy for cancer treatment. We report that the γ-secretase inhibitor-I (GSI-I) sensitizes human breast cancer cells to apoptosis mediated by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). The antiproliferative GSI-I/TRAIL synergi…

Cancer ResearchNotch signaling pathwayApoptosisBreast NeoplasmsBiologymedicine.disease_causeTNF-Related Apoptosis-Inducing LigandDownregulation and upregulationGenes junSettore BIO/10 - BiochimicaSurvivinmedicineHumansTranscription factorReceptors NotchCell DifferentiationCell biologyGene Expression Regulation NeoplasticReceptors TNF-Related Apoptosis-Inducing LigandOncologyApoptosisCancer cellMCF-7 CellsFemalenotch signaling γ-secretase inhibitor-I/TRAIL combined treatment apoptosis breast cancer cells AP-1Signal transductionAmyloid Precursor Protein SecretasesCarcinogenesisSignal TransductionInternational journal of oncology
researchProduct

Midregion PTHrP regulates Rip1 and caspase expression in MDA-MB231 breast cancer cells.

2007

It was previously reported that the midregion PTHrP domain (38-94)-amide restrains growth and invasion "in vitro", causes striking toxicity and accelerates death of some breast cancer cell lines, the most responsive being MDA-MB231 whose tumorigenesis was also attenuated "in vivo". In addition, we have demonstrated that midregion PTHrP is imported in the nucleoplasm of cultured MDA-MB231 cells, and that "in vitro" it can bind chromatin of metaphase spread preparations and also an isolated 20-mer oligonucleotide, thereby appearing endowed with a putative transcription factor-like DNA-binding ability. Here, we examined whether PTHrP (38-94)-amide was able to modulate the expression of genes e…

Cancer ResearchProgrammed cell deathbcl-X ProteinApoptosisBreast NeoplasmsPTHrP Rip1 caspase breast cancer cellsmedicine.disease_causeTransfectionCell MovementCell Line TumorGene expressionmedicineTranscriptional regulationHumansNeoplasm InvasivenessSettore BIO/06 - Anatomia Comparata E Citologiaskin and connective tissue diseasesCaspaseCell ProliferationNucleoplasmbiologyJNK Mitogen-Activated Protein KinasesParathyroid Hormone-Related ProteinRNA-Binding ProteinsOligonucleotides AntisenseMolecular biologyPeptide FragmentsChromatinCell biologyNuclear Pore Complex ProteinsSettore BIO/12 - Biochimica Clinica E Biologia Molecolare ClinicaOncologyApoptosisCaspasesbiology.proteinFemalebcl-Associated Death ProteinCarcinogenesisSignal TransductionBreast cancer research and treatment
researchProduct

Parthenolide induces superoxide anion production by stimulating EGF receptor in MDA-MB-231 breast cancer cells

2013

The sesquiterpene lactone parthenolide (PN) has recently attracted considerable attention because of its anti-microbial, anti-inflammatory and anticancer effects. However, the mechanism of its cytotoxic action on tumor cells remains scarcely defined. We recently provided evidence that the effect exerted by PN in MDA-MB-231 breast cancer cells was mediated by the production of reactive oxygen species (ROS). The present study shows that PN promoted the phosphorylation of EGF receptor (phospho-EGFR) at Tyr1173, an event which was observed already at 1  h of incubation with 25  µM PN and reached a peak at 8-16  h. This effect seemed to be a consequence of ROS production, because N-acetylcystein…

Cancer Researchparthenolide epidermal growth factor receptor NADPH oxidase breast cancer cellsBreast NeoplasmsAntioxidantschemistry.chemical_compoundSuperoxidesCell Line TumorSettore BIO/10 - BiochimicaHumansParthenolideEnzyme InhibitorsPhosphorylationchemistry.chemical_classificationReactive oxygen speciesNADPH oxidasebiologySuperoxideKinaseAnti-Inflammatory Agents Non-SteroidalNF-kappa BAcetophenonesNADPH OxidasesTyrphostinsMolecular biologyAcetylcysteineErbB ReceptorsOncologychemistryApoptosisApocyninQuinazolinesbiology.proteinPhosphorylationFemaleProtein Tyrosine PhosphatasesSesquiterpenesInternational Journal of Oncology
researchProduct